Part Number Hot Search : 
13EHET TL431CDT NTE1910 LC7153M SZN5916 2SD180 UPC1676G 51161
Product Description
Full Text Search
 

To Download V23990-K229-A40-1A-PM Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  v23990-k229-a40-pm miniskiip? 2 pim 1200v / 25a solderless interconnection trench fieldstop igbt4 technology industrial motor drives v23990-k229-a40-pm t j =25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1600 v t h =80c 40 t c=80c 40 t h =80c 56 t c=80c 85 maximum junction temperature t j max 1 5 0 c t1,t2,t3,t4,t5,t6,t7 t h =80c 33 t c=80c 40 t h =80c 89 t c=80c 135 t sc t j 1 50c 1 0 s v cc v ge =15v 80 0 v t j =t j max t j =t j max t p limited by t j max 2 0 175 a 75 1200 collector-emitter break down voltage repetitive peak collector current dc collector current v ce i cpulse i c features miniskiip? 2 housing target applications schematic 270 d8,d9,d10,d11,d12,d13 p tot a w dc forward current surge forward current power dissipation per diode i 2 t 36 0 t j =150c t j =t j max t p =10ms a types i 2 t-value maximum ratings i fav a 2 s i fsm condition t j =t j max v c v w a m aximum junction temperature power dissipation per igbt v ge t j max p tot short circuit ratings g a te-emitter peak voltage copyright vincotech 1 revision: 4.1
v23990-k229-a40-pm t j =25c, unless otherwise specified parameter symbol value unit maximum ratings condition d1,d2,d3,d4,d5,d6,d7 t h =80c 25 t c=80c 32 t h =80c 62 t c=80c 95 thermal properties insulation properties v is t=2s dc voltage 4000 v min 12.7 mm min 12.7 mm 175 maximum junction temperature c p tot i frm t j max 1 2 00 v w i f peak repetitive reverse voltage v rrm dc forward current a t j =t j max t p =10ms half sine a 16 0 t j =t j max re petitive peak forward current power dissipation per diode -40+(tjmax - 25) c storage temperature t stg -40+125 c c learance insulation voltage creepage distance t op operation temperature under switching condition copyright vincotech 2 revision: 4.1
v23990-k229-a40-pm parameter sy mbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 0,8 1,08 1,35 tj=125c 1,03 tj=25c 0,9 tj=125c 0,78 tj=25c 18 tj=125c 21 tj=25c 0,01 tj=125c 1,1 thermal resistance chip to heatsink per chip r thjh 1,25 tj=25c 5 5,8 6,5 tj=150c tj=25c 1,35 1,88 2,15 tj=150c 2,2 tj=25c 0,05 tj=150c tj=25c 300 tj=150c tj=25c 112 tj=150c 113 tj=25c 29,3 tj=150c 34,7 tj=25c 231 tj=150c 303 tj=25c 91 tj=150c 137 tj=25c 1,87 tj=150c 2,77 tj=25c 1,49 tj=150c 2,43 thermal resistance chip to heatsink per chip r thjh 1,2 tj=25c 1,5 2,47 2,75 tj=150c 2,49 tj=25c 13,5 tj=150c 18,3 tj=25c 319 tj=150c 544 tj=25c 1,48 tj=150c 3,69 di(rec)max tj=25c 174 /dt tj=150c 64 tj=25c 0,52 tj=150c 1,44 thermal resistance chip to heatsink per chip r thjh 1,52 e vincotech ntc reference 1,731*10-5 1/k2 7,635*10-3 1/k b-value b(25/100) tol. % t=25c t=25c a-value b(25/50) tol. % thermal grease thickness 50 m =1w/mk k/ w t hermal grease thickness 50 m =1w/mk k/ w a 15 v 25 - v v nc 1000 % -3 1 6 70,313 3 v ce =v ge f=1mhz rgoff=32 15 0 0 15 v cc=960v t r t d(off) q gate q rr t rr erec reverse transfer capacitance i ges v ge(th) v ce(sat) i ces c oss r gint t f e on c ies e off i rrm t d(on) c rss v f input capacitance output capacitance turn-off energy loss per pulse collector-emitter saturation voltage turn-on energy loss per pulse collector-emitter cut-off current incl. diode value co n ditions characteristic values forward voltage t h reshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t d8,d9,d10,d11,d12,d13 25 k/ w v v m m a rev erse current i r 85 c mws a/s rgon=32 20 15 2 5 2 5 600 diode forward voltage gate charge reverse recovery time reverse recovered energy peak rate of fall of recovery current reverse recovered charge d1,d2,d3,d4,d5,d6,d7 peak reverse recovery current fa l l time turn-off delay time turn-on delay time rise time gate-emitter leakage current integrated gate resistor t1,t2,t3,t4,t5,t6,t7 gate emitter threshold voltage 25 0 , 00085 40 600 25 0 1200 mw/k t=25c t=100c t=25c r100 p t=100c ra t ed resistance r power dissipation constant deviation of r100 ? r/r r100=1670 1500 th e rmal grease thickness 50 m =1w/mk thermistor rgon=32 tj=25c tj = 25c ns ma ns na 1430 115 120 pf mws copyright vincotech 3 revision: 4.1
v23990-k229-a40-pm figure 1 t1,t2,t3,t4,t5,t6,t7 igbt figure 2 t1,t2,t3,t4,t5,t6,t7 igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at a t t p = 2 5 0 s t p = 25 0 s t j = 25 c t j = 15 0 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 t1 , t2,t3,t4,t5,t6,t7 igbt figure 4 d1,d2,d3,d4,d5,d6,d7 fwd typical transfer characteristics typi cal diode forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at a t t p = 2 5 0 s t p = 25 0 s v ce = 1 0 v t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 typical output characteristics 0 15 30 45 60 75 0 1 2 3 4 5 v ce (v) i c (a) 0 5 10 15 20 25 0 2 4 6 8 10 12 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 15 30 45 60 75 0 1 2 3 4 5 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 15 30 45 60 75 0 1 2 3 4 5 v ce (v) i c (a) copyright vincotech 4 revision: 4.1
v23990-k229-a40-pm figure 5 t1,t2,t3,t4,t5,t6,t7 igbt figure 6 t1,t2,t3,t4,t5,t6,t7 igbt typical switching energy losses typi cal switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v ce = 60 0 v v ge = 1 5 v v ge = 1 5 v r gon = 32 i c = 25 a r goff = 32 fi gure 7 t1 , t2,t3,t4,t5,t6,t7 igbt figure 8 t1,t2,t3,t4,t5,t6,t7 igbt typical reverse recovery energy loss typi cal reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wi th an inductive load at with an inductive load at t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v ce = 60 0 v v ge = 1 5 v v ge = 1 5 v r gon = 32 i c = 25 a t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 e on high t e off high t e on low t e off low t 0 2 4 6 8 0 1 0 20 30 40 50 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 2 4 6 8 0 30 60 90 120 150 r g ( w ) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0 , 4 0,8 1,2 1,6 2 0 10 20 30 40 50 i c (a) e (mws) t j = t jmax -25c e rec t j = 25c e rec 0 0,4 0,8 1,2 1,6 2 0 30 60 90 120 150 r g ( w ) e (mws) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 5 r e v ision: 4.1
v23990-k229-a40-pm figure 9 t1,t2,t3,t4,t5,t6,t7 igbt figure 10 t1,t2,t3,t4,t5,t6,t7 igbt typical switching times as a typi cal switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wi th an inductive load at with an inductive load at t j = 1 5 0 c t j = 15 0 c v ce = 60 0 v v ce = 60 0 v v ge = 1 5 v v ge = 1 5 v r gon = 32 i c = 25 a r goff = 32 fi gure 11 d1 , d2,d3,d4,d5,d6,d7 fwd figure 12 d1,d2,d3,d4,d5,d6,d7 fwd typical reverse recovery time as a typi cal reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(i c ) t rr = f(r gon ) at a t t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v r = 60 0 v v ge = 1 5 v i f = 25 a r gon = 32 v g e = 1 5 v t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 t doff t f t don t r 0,001 0 , 01 0,1 1 0 5 10 15 20 25 30 35 40 45 50 i c (a) t ( m s) t j = t jmax -25c t rr t j = 25c t rr 0 0 , 2 0,4 0,6 0,8 1 0 30 60 90 120 150 r g on ( w ww w ) t rr ( m s) t doff t f t don t r 0,001 0 , 01 0,1 1 0 30 60 90 120 150 r g ( w ww w ) t ( m s) t j = t jmax -25c t rr t rr t j = 25c 0 0 , 2 0,4 0,6 0,8 1 0 10 20 30 40 50 i c (a) t rr ( m s) 25 / 150 25 / 150 copyright vincotech 6 r e v ision: 4.1
v23990-k229-a40-pm figure 13 d1,d2,d3,d4,d5,d6,d7 fwd figure 14 d1,d2,d3,d4,d5,d6,d7 fwd typical reverse recovery charge as a typi cal reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at a t at t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v r = 60 0 v v ge = 1 5 v i f = 25 a r gon = 32 v g e = 1 5 v figure 15 d1 , d2,d3,d4,d5,d6,d7 fwd figure 16 d1,d2,d3,d4,d5,d6,d7 fwd typical reverse recovery current as a typi cal reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at a t t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v r = 60 0 v v ge = 1 5 v i f = 25 a r gon = 32 v g e = 1 5 v t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 t j = t jmax - 25c t j = 25c i rrm 0 10 2 0 30 40 50 0 30 60 90 120 150 r gon ( w ww w ) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 1 2 3 4 5 0 3 0 60 90 120 150 r g on ( w ) q rr ( m c) t j = t jmax -25c i rrm t j = 25c i rrm 0 5 1 0 1 5 20 25 0 10 20 30 40 50 i c (a) i rrm (a) t j = t jmax -25c q rr t j = 25c q rr 0 1 2 3 4 5 0 1 0 20 30 40 50 i c (a) q rr ( m c) 25 / 150 25 / 150 25 / 150 25 / 150 copyright vincotech 7 r e v ision: 4.1
v23990-k229-a40-pm figure 17 d1,d2,d3,d4,d5,d6,d7 fwd figure 18 d1,d2,d3,d4,d5,d6,d7 fwd typical rate of fall of forward typi cal rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(i c ) d i 0 / dt,di rec /dt = f(r gon ) at a t t j = 2 5 /150 c t j = 25 /150 c v ce = 60 0 v v r = 60 0 v v ge = 1 5 v i f = 25 a r gon = 32 v g e = 1 5 v figure 19 t1 , t2,t3,t4,t5,t6,t7 igbt figure 20 d1,d2,d3,d4,d5,d6,d7 fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at a t d = t p / t d = t p / t r thjh = 1, 20 k/w r thjh = 1, 52 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,03 5,7e+00 0,03 9,3e+00 0,14 8,1e-01 0,22 7,6e-01 0,51 1,6e-01 0,63 1,5e-01 0,27 4,9e-02 0,37 3,0e-02 0,17 1,0e-02 0,17 4,4e-03 0,07 9,8e-04 0,10 6,5e-04 t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10 t p (s) z th-jh (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt di rec /dt 0 3 0 0 600 900 1200 1500 1800 0 30 60 90 120 150 r gon ( w ww w ) di rec / dt (a/ m s) di 0 /dt high t di rec /dt high t di rec /dt low t di o /dt low t 0 2 0 0 400 600 800 1000 0 10 20 30 40 50 i c (a) di rec / dt (a/ m m m m s) di rec /dt di 0 / dt 25 / 150 25 / 150 copyright vincotech 8 r e v ision: 4.1
v23990-k229-a40-pm figure 21 t1,t2,t3,t4,t5,t6,t7 igbt figure 22 t1,t2,t3,t4,t5,t6,t7 igbt power dissipation as a coll ector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at a t t j = 1 7 5 c t j = 17 5 c v ge = 15 v figure 23 d1, d2,d3,d4,d5,d6,d7 fwd figure 24 d1,d2,d3,d4,d5,d6,d7 fwd power dissipation as a for w ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 7 5 c t j = 17 5 c t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 0 40 80 120 160 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i c (a) 0 30 60 90 120 0 50 100 150 200 t h ( o c) p tot (w) 0 10 20 30 40 0 50 100 150 200 t h ( o c) i f (a) copyright vincotech 9 revision: 4.1
v23990-k229-a40-pm figure 25 t1,t2,t3,t4,t5,t6,t7 igbt figure 26 t1,t2,t3,t4,t5,t6,t7 igbt safe operating area as a function gat e voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q ge ) at a t d = single pulse i c = 2 5 a t h = 80 oc v ge = 1 5 v t j = t jmax oc t1,t2,t3,t4,t5,t6,t7/d1,d2,d3,d4,d5,d6,d7 v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 0 20 40 60 80 100 120 q g (nc) v ge (v) 240v 960v copyright vincotech 10 revision: 4.1
v23990-k229-a40-pm figure 1 d8,d9,d10,d11,d12,d13 diode figure 2 d8,d9,d10,d11,d12,d13 diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at a t t p = 2 5 0 s d = t p / t r thjh = 1, 250 k/w figure 3 d8 , d9,d10,d11,d12,d13 diode figure 4 d8,d9,d10,d11,d12,d13 diode power dissipation as a forw ard current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) at a t t j = 1 5 0 oc t j = 15 0 oc d8,d9,d10,d11,d12,d13 0 15 30 45 60 75 0 0,5 1 1,5 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 20 40 60 80 100 120 0 30 60 90 120 150 t h ( o c) p tot (w) 0 10 20 30 40 0 30 60 90 120 150 t h ( o c) i f (a) copyright vincotech 11 revision: 4.1
v23990-k229-a40-pm figure 1 thermistor typical ptc characteristic as a function of temperature r t = f(t) thermistor ptc-typical temperature characteristic 1000 1 2 00 1400 1600 1800 2000 25 50 75 100 125 t (c) r/  copyright vincotech 12 revision: 4.1
v23990-k229-a40-pm t j 150 c r gon 32  r goff 32  figur e 1 ou t put inverter igbt figure 2 output inverter igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of tdon, t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = - 1 5 v v ge (0%) = -1 5 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 60 0 v v c (100%) = 60 0 v i c (100%) = 25 a i c (100%) = 25 a t doff = 0 , 30  s t don = 0, 11  s t eoff = 0, 68  s t eon = 0, 42  s figure 3 out put inverter igbt figure 4 output inverter igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 60 0 v v c (100%) = 60 0 v i c (100%) = 25 a i c (100%) = 25 a t f = 0 , 14  s t r = 0, 03  s switching definitions output inverter general conditions = = = i c 1% v ce 90% v ge 90% -30 - 1 0 10 30 50 70 90 110 130 -0,2 -0,05 0,1 0,25 0,4 0,55 0,7 0,85 time (us) % t doff t eoff v ce i c v ge i c10% v ge10% t don v ce 3% -30 0 30 6 0 90 120 150 180 5,9 6 6,1 6,2 6,3 6,4 6,5 6,6 6,7 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -20 0 20 4 0 60 80 100 120 140 0,2 0,25 0,3 0,35 0,4 0,45 0,5 0,55 time (us) % v ce i c t f i c10% i c 90% -3 0 0 30 60 90 120 150 180 6,1 6,2 6,3 6,4 6,5 6,6 time(us) % tr v ce ic copyright vincotech 1 3 r evision: 4.1
v23990-k229-a40-pm figure 5 output inverter igbt figure 6 output inverter igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 14 ,95 kw p on (100%) = 14 ,95 kw e off (100%) = 2, 43 mj e on (100%) = 2, 77 mj t eoff = 0, 68 s t eon = 0, 42 s figure 7 ou t put inverter fwd turn-off switching waveforms & definition of t rr v d (100%) = 60 0 v i d (100%) = 25 a i rrm (100%) = 18 a t rr = 0, 54 s switching definitions output inverter i c 1% v ge 90% -20 0 20 4 0 60 80 100 120 -0,2 0 0,2 0,4 0,6 0,8 1 time (us) % p off e off t eoff v ce 3% v ge 10% -20 2 0 6 0 100 140 180 5,85 6 6,15 6,3 6,45 6,6 6,75 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% trr -120 -80 -40 0 40 80 120 6 6,2 6,4 6,6 6,8 7 time(us) % i d v d fitted copyright vincotech 1 4 r evision: 4.1
v23990-k229-a40-pm figure 8 output inverter fwd figure 9 output inverter fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 2 5 a p rec (100%) = 14 ,95 kw q rr (100%) = 3, 69 c e rec (100%) = 1, 44 mj t qrr = 0, 90 s t erec = 0, 90 s switching definitions output inverter t qrr -100 - 5 0 0 50 100 150 6 6,2 6,4 6,6 6,8 7 7,2 % i d q rr time(us) -20 0 20 40 60 80 100 120 6 6,2 6,4 6,6 6,8 7 7,2 time(us) % p rec e rec te rec copyright vincotech 1 5 r evision: 4.1
v23990-k229-a40-pm version ordering code in datamatrix as in packaging barcode as with std lid (black v23990-k12-t-pm) v23990-k229-a40-/0a/-pm k229a40 k229a40-/0a/ with std lid (black v23990-k12-t-pm) and p12 v23990-k229-a40-/1a/-pm k229a40 k229a40-/1a/ with thin lid (white v23990-k13-t-pm) v23990-k229-a40-/0b/-pm k229a40 k229a40-/0b/ with thin lid (white v23990-k13-t-pm) and p12 v23990-k229-a40-/1b/-pm k229a40 k229a40-/1b/ outline pinout ordering code & marking ordering code and marking - outline - pinout copyright vincotech 16 revision: 4.1


▲Up To Search▲   

 
Price & Availability of V23990-K229-A40-1A-PM

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X